Problem 1

City _____ Name _____

N⁰	ANSWER	Maximum Score	Score
1	Acceleration points toward the owner in the negative direction	1	
	of <i>OY</i> , $a_0^{\text{dog}} = V_0^2 / l$.		
2	Magnitude of dog's velocity at A, $V_A^{\text{dog}} = V_0 \cos \alpha = \frac{V_0}{\sqrt{2}}$.	1	
	Dog acceleration at <i>A</i> is directed along <i>OX</i> , $\vec{a}_A^{\text{dog}} = \frac{V_0^2}{l\sqrt{2}} \cdot \vec{e}_x$.	2	
3	Dog trajectory in parametric form,	5	
	$x(\alpha) = l \cdot \left\{ \ln \left[\cot \left(\frac{\alpha}{2} \right) \right] - \cos \alpha \right\}$ and $y(\alpha) = l \cdot \sin \alpha$; in	(for parametric form: 3 for $x + 2$ for y)	
	explicit form:	- 57	
	$x(y) = l \cdot \ln\left(\frac{l + \sqrt{l^2 - y^2}}{y}\right) - \sqrt{l^2 - y^2}.$		
	Sketch of dog trajectory, $Y \blacktriangle$	1	
4	Dog law of motion,	5 = 3 for x and 2	
	$x(t) = V_0 t - l \cdot \tanh\left(\frac{V_0 t}{l}\right)$ and $y(t) = l \cdot \cosh^{-1}\left(\frac{V_0 t}{l}\right)$.	for y	
	Time dependence of dog speed, $V^{\text{dog}}(t) = V_0 \cdot \tanh\left(\frac{V_0 t}{l}\right)$.	3	
5	Horizontal component of force exerted on dog by the ground versus time,	4	
	$F(t) = \frac{mV_0^2}{l} \cdot \cosh^{-1}\left(\frac{V_0 t}{l}\right).$		
6	Dog law of motion after a long time (for $t >> \frac{l}{V_0}$),	2	
	$x(t) \approx V_0 t - l$, $y(t) \approx 0$.		
7	Minimum distance between the dog and the fly after a long	4 (if mistake is	
	time, $r_{\min} = l \left[1 - \ln \left(1 + \left(e - \sqrt{e^2 - 1} \right)^2 \right) \right] \approx 0,964l$.	only in integral calculation - 2)	
8	Magnitude of fly's acceleration at A, $a_A^{\text{fly}} = \frac{V_0^2}{l}$.	2	
	TOTAL	30	

Problem 2

City _____ Name _____

N⁰	ANSWER	Maximum Score	Score
1.1.	$\int I_1 = (\mathcal{E} - U) / R$	1	
	$\alpha I_2^2 = U + \mathbf{\mathcal{E}}$		
	$\left\{ 2\alpha I_3^2 = U \right\},$		
	$I_4 = I_0 f \left(1 - x\right)$		
	$I_2 + I_3 = I_1 + I_4$		
	where $x \equiv \frac{U}{\varepsilon}$ and $f()$ is the diode I-V function. Any		
	equivalent set of equations is accepted.		
1.2.	$I_{\rm A} = (0, 267 \pm 0, 005) {\rm A}$;	4 (3) (1)	
	less accurate answer: $I_A = (0, 27 \pm 0, 02) \text{ A}$;		
	«crude» answer: from 0,2 A to 0,3 A.		
2.1.	$t_0 = \sqrt{\alpha C} \int \frac{dq}{\sqrt{q}} = 2\sqrt{\alpha Cq_0}$	2	
2.2	0 Fountion written:	1	
2.2.	Equation written: $t = rC$	1	
2.3.	$t = rC\ln\left(\frac{I_0}{I}\right) + 2\alpha C(I_0 - I)$	3	
2.4.	$t = \tau \ln\left(\frac{\sqrt{(t_0/\tau)^2 + 1} - 1}{\sqrt{(t_0/\tau\sqrt{n})^2 + 1} - 1}\right) + \sqrt{t_0^2 + \tau^2} - \sqrt{\frac{t_0^2}{n} + \tau^2} \text{ or }$	4 = 2 for equation (in any form) + 2 (1) for numerical	
	$t \approx t_0 + \tau \ln\left(\frac{2n\tau}{e t_0}\right)$. Numerical answer: 25-26 ms (24-28 ms).	answer	
3.1.	$I(q) = \sqrt{\frac{1}{\alpha C} \left\{ \frac{L}{2\alpha} + q - \left(\frac{L}{2\alpha} + q_0\right) \cdot \exp\left(\frac{2\alpha}{L}(q - q_0)\right) \right\}}$	4	
3.2.	$\frac{Q_1}{E_0} \approx 10\%$, acceptable interval from 9,5% to 10,5% (from 9% to 11%)	4 (2)	
3.3.	$\frac{Q_1'}{E_0} = 19\%$	3	
3.4.	$\frac{Q_2}{E_0} \approx 27\%$, acceptable interval from 26% to 27,5% (from	4 (2)	
	25% to 29%)		
	TOTAL	30	

Problem 3

^!	4
	TV
	••.

_____ Name _____

N⁰	ANSWER	Maximum Score	Score
1.1.	Density of heat outflow from the planet-ocean depths,	3 = (2 for equation)	
	$q_0 = \sigma T_1^4 \approx 0.35 \text{W/m}^2;$	+ (1 for num. value)	
	Allowed range $(0,34 \div 0,36)$ W/m ² .		
1.2.	Ice sheet thickness at pole,	3 = (2 for equation)	
	$A = \frac{\beta}{(\pi + \pi)} \left(\frac{\beta}{(\pi + \pi)} \right) = 2250 \pi$	+ (1 for num. value)	
	$H_1 = \frac{1}{\sigma T_1^4} (I_{in} - I_1) \left(1 - \frac{1}{2} (I_{in} + I_1) \right) \approx 2250 \text{ m},$		
	here $A = 5,40 \text{ W}/(\text{m} \cdot \text{K}), \beta = (1/465) \text{ K}^{-1}$.		
	Allowed range (2200 ÷ 2300) m.		
1.3.	Ice sheet thickness on equator in area of maximum	2 = (1 for equation)	
	temperature	+ (1 for num. value)	
	$H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2) \right) \approx 1600 \text{ m},$		
	here $A = 5,40 \text{ W}/(\text{m} \cdot \text{K}), \beta = (1/465) \text{ K}^{-1}$.		
	Allowed range (1550 ÷ 1650) m.		
1.4.	Temperature of star photosphere	3 = (2 for equation)	
	$_{4}r_{2}^{2}$	+ (1 for num value)	
	$T_S = \left \frac{T_0}{R^2} (T_2^4 - T_1^4) \approx 3100 \text{ K.} \right $		
	$\sqrt{n_X}$		
1.5	Allowed range $(3000 \div 3200)$ K.	2	
1.5.	Maximum daytime temperature on the planet surface	2	
	$T(\theta) = \sqrt[4]{T_1^4 + (T_2^4 - T_1^4)\cos\theta}$		
		-	
1.6.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930).	1	
1.6. 2.1.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium	$\frac{1}{3 = (1 \text{ for equation})}$	
1.6. 2.1.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level,	1 3 = (1 for equation) + (2 (1) for num.	
1.6. 2.1.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $2\rho H_2$	1 3 = (1 for equation) + (2 (1) for num. value)	
1.6.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $\tau \approx \boxed{\frac{2\rho H_2}{\rho_2 q}} \approx 54$ s,	1 3 = (1 for equation) + (2 (1) for num. value)	
1.6.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54$ s,	1 3 = (1 for equation) + (2 (1) for num. value)	
1.6.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54$ s, where	1 3 = (1 for equation) + (2 (1) for num. value)	
1.6.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54$ s, where $H_2 = \frac{A}{\pi^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600$ m.	1 3 = (1 for equation) + (2 (1) for num. value)	
1.6.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54$ s, where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600$ m.	1 3 = (1 for equation) + (2 (1) for num. value)	
1.6. 2.1.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54$ s, where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600$ m. Allowed range (50 ÷ 60) (40 ÷ 70)*	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation)	
1.6. 2.1. 2.2.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54$ s, where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600$ m. Allowed range (50 ÷ 60) (40 ÷ 70) [*] Ice crust thickness in polynya immediately after the freezing of surface layer.	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num.	
2.1.	$\Lambda_{\rm X} \approx 929$ nm. Allowed range (928 ÷ 930). Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54$ s, where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600$ m. Allowed range (50 ÷ 60) (40 ÷ 70) [*] Ice crust thickness in polynya immediately after the freezing of surface layer, Lp_3	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value)	
1.6. 2.1. 2.2.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda q} \approx 4,5 m,$	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value)	
2.1.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda g} \approx 4,5 \text{ m,}$ where $p_3 = 610$ Pa is the pressure at triple point of water.	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value)	
2.1.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda g} \approx 4,5 m,$ where $p_3 = 610$ Pa is the pressure at triple point of water. Allowed range $(4,3 \div 4,6) (4 \div 5)^*$	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value)	
1.6. 2.1. 2.2. 2.2. 2.3.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda g} \approx 4,5 m,$ where $p_3 = 610$ Pa is the pressure at triple point of water. Allowed range $(4,3 \div 4,6) (4 \div 5)^*$ Crater depth, $h_c \approx 160$ m.	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value) 2	
1.6. 2.1. 2.2. 2.2. 2.3.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda g} \approx 4,5 m,$ where $p_3 = 610$ Pa is the pressure at triple point of water. Allowed range $(4,3 \div 4,6) (4 \div 5)^*$ Crater depth, $h_c \approx 160$ m. Allowed range $(150 \div 170)$	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value) 2	
1.6. 2.1. 2.2. 2.3. 3.1.	$\begin{split} \Lambda_{\rm X} &\approx 929 \text{ nm. Allowed range } (928 \div 930). \\ \hline \text{Time of water rising in polynya to the new equilibrium level,} \\ & \tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,} \\ &\text{where} \\ H_2 &= \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.} \\ &\text{Allowed range } (50 \div 60) (40 \div 70)^* \\ &\text{Ice crust thickness in polynya immediately after the freezing of surface layer,} \\ & h_0 &= \frac{L p_3}{\rho \lambda g} \approx 4,5 \text{ m,} \\ &\text{where } p_3 = 610 \text{ Pa is the pressure at triple point of water.} \\ &\text{Allowed range } (4,3 \div 4,6) (4 \div 5)^* \\ &\text{Crater depth, } h_c \approx 160 \text{ m.} \\ &\text{Allowed range } (150 \div 170) \\ &\text{Ice layer thickness will increase two-fold compared to the} \end{split}$	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value) 2 5 = (3 for equation)	
1.6. 2.1. 2.2. 2.3. 3.1.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda g} \approx 4,5 m,$ where $p_3 = 610$ Pa is the pressure at triple point of water. Allowed range $(4,3 \div 4,6) (4 \div 5)^*$ Crater depth, $h_c \approx 160$ m. Allowed range $(150 \div 170)$ Ice layer thickness will increase two-fold compared to the initial thickness h_0 in	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value) 2 5 = (3 for equation) + (2 (1) for num.	
1.6. 2.1. 2.2. 2.3. 3.1.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda g} \approx 4,5 m,$ where $p_3 = 610$ Pa is the pressure at triple point of water. Allowed range $(4,3 \div 4,6) (4 \div 5)^*$ Crater depth, $h_c \approx 160$ m. Allowed range $(150 \div 170)$ Ice layer thickness will increase two-fold compared to the initial thickness h_0 in $t_1 \approx \frac{3\lambda\rho}{\sigma} h_0^2 \approx 1,66 \cdot 10^7 \text{ s} \approx$	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value) 2 5 = (3 for equation) + (2 (1) for num. value)	
1.6. 2.1. 2.2. 2.3. 3.1.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda g} \approx 4,5 m,$ where $p_3 = 610$ Pa is the pressure at triple point of water. Allowed range $(4,3 \div 4,6) (4 \div 5)^*$ Crater depth, $h_c \approx 160$ m. Allowed range $(150 \div 170)$ Ice layer thickness will increase two-fold compared to the initial thickness h_0 in $t_1 \approx \frac{3\lambda\rho}{2q_0H_2}h_0^2 \approx 1,66 \cdot 10^7 \text{ s} \approx 1000 \text{ m.}$	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value) 2 5 = (3 for equation) + (2 (1) for num. value)	
1.6. 2.1. 2.2. 2.3. 3.1.	$\Lambda_{\rm X} \approx 929 \text{ nm. Allowed range } (928 \div 930).$ Time of water rising in polynya to the new equilibrium level, $\tau \approx \sqrt{\frac{2\rho H_2}{\rho_0 g}} \approx 54 \text{ s,}$ where $H_2 = \frac{A}{\sigma T_1^4} (T_{in} - T_2) \left(1 - \frac{\beta}{2} (T_{in} + T_2)\right) \approx 1600 \text{ m.}$ Allowed range $(50 \div 60) (40 \div 70)^*$ Ice crust thickness in polynya immediately after the freezing of surface layer, $h_0 = \frac{Lp_3}{\rho\lambda g} \approx 4,5 m,$ where $p_3 = 610$ Pa is the pressure at triple point of water. Allowed range $(4,3 \div 4,6) (4 \div 5)^*$ Crater depth, $h_c \approx 160$ m. Allowed range $(150 \div 170)$ Ice layer thickness will increase two-fold compared to the initial thickness h_0 in $t_1 \approx \frac{3\lambda\rho}{2q_0H_2}h_0^2 \approx 1,66 \cdot 10^7 \text{ s} \approx$ ≈ 192 Earth days.	1 3 = (1 for equation) + (2 (1) for num. value) 5 = (3 for equation) + (2 (1) for num. value) 2 5 = (3 for equation) + (2 (1) for num. value)	

3.2.	Age of polynya in which ice crust is $h = 100$ m thick, $t_2 \approx \frac{\lambda \rho}{q_0 H_2} \left(\frac{h^2}{2} - \frac{h_0^2}{2}\right) \approx 2,7 \cdot 10^9 \text{ s} \approx$ $\approx 87 \text{ Earth years.}$	4 = (2 for equation) + (2 (1) for num. value)	
3.3.	Allowed range $(85 \div 95) (80 \div 100)$ Crude estimate for the age of polynya in which the bottom of ice crust reached that of the surrounding ice, $t_3 \approx \frac{\lambda \rho H_2}{q_0} \ln \left(\frac{H_2}{H_2 - H_0}\right) \approx 3.2 \cdot 10^{12} \text{ s} \approx$	7 = 4 for equation + 3 for num. value (100 ÷ 105)	
	$\approx 102 \text{ thousand Earth years.}$ Allowed range (100 ÷ 105) (95 ÷ 110) Accurate answer, $t_3 = \frac{\lambda \rho}{q_0} \left[H_2 \cdot \ln \left(\frac{H_2 - h_0}{H_2 - H(t)} \right) - H(t) + h_0 \right] \approx$	5 = (3 for equation) + (2 for num. value 95 ÷ 110), the accurate answer	
	≈ 62 thousand Earth years. Allowed range (60 ÷ 65). TOTAL	also scores as 7 = 4 + 3 40	

*The second range corresponds to the score in parenthesis.